| Home | E-Submission/Review | Sitemap | Editorial Office |  
Korean Journal of Metals and Materials Search > Browse Articles > Search

Improvement in the Hydrogenation and Dehydrogenation Features of Mg by Milling in Hydrogen with Vanadium Chloride
수소 분위기에서 Mg와 VCl3의 밀링에 의한 Mg의 수소 흡수 방출 특성의 향상
Myoung Youp Song, Seong Ho Lee, Young Jun Kwak
송명엽, 이성호, 곽영준
Korean J. Met. Mater. 2021;59(10):709-717.   Published online 2021 Sep 6
DOI: https://doi.org/10.3365/KJMM.2021.59.10.709

VCl3 (vanadium (III) chloride) was selected as an additive to Mg to increase the hydrogenation and dehydrogenation rates and the hydrogen storage capacity of Mg. Instead of MgH2, Mg was used as a starting material since Mg is cheaper than MgH2. Samples with a composition of 95 wt% Mg +..... More

                           Cited By 2
in situ Fabrication of Fe-TiB<sub>2</sub> Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH<sub>2</sub> Powder Mixture
FeB와 TiH2 혼합분말의 유성볼밀 및 후속열처리에 의한 Fe-TiB2 나노복합분말 in situ 제조
Xuan-Khoa Huynh, Sun-Woo Bae, Ji Soon Kim
Xuan-Khoa Huynh, 배선우, 김지순
Korean J. Met. Mater. 2017;55(1):10-15.   Published online 2017 Jan 5
DOI: https://doi.org/10.3365/KJMM.2017.55.1.10

Fe-TiB2 powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH2) powder mixture. Mechanical activation of the (FeB+TiH2) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not..... More

         Cited By 4
1 |
Email Alert
Author's Index
Impact factor
The Korean Institute of Metals and Materials
SCImago Journal & Country Rank
Similarity Check
Crossref Cited-by Linking
Editorial Office
The Korean Institute of Metals and Materials
6th Fl., Seocho-daero 56-gil 38, Seocho-gu, Seoul 06633, Korea
TEL: +82-2-557-1071   FAX: +82-2-557-1080   E-mail: metal@kim.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Institute of Metals and Materials.                 Developed in M2PI