| Home | E-Submission/Review | Sitemap | Editorial Office |  
top_img
Korean Journal of Metals and Materials Search > Browse Articles > Search



Size Dependency of a ZnO Nanorod-Based Piezoelectric Nanogenerator Evaluated by Conductive Atomic Force Microscopy
전도식 원자현미경을 이용한 ZnO 나노로드 기반 압전 나노발전기의 사이즈 의존성 평가
Yijun Yang, Kwanlae Kim
양이준, 김관래
Korean J. Met. Mater. 2020;58(1):67-75.   Published online 2020 Jan 1
DOI: https://doi.org/10.3365/KJMM.2020.58.1.67

Abstract
ZnO nanorods are one of the most studied materials because it can be facilely grown on a wide range of substrates at low temperature. ZnO exhibits piezoelectricity as well as semiconducting properties, and hence is applicable to piezoelectric nanogenerators and sensors. In the present work, the effect of ZnO nanorods’..... More

                   Web of Science 8  Crossref 6
Potential of Ruthenium and Cobalt as Next-generation Semiconductor Interconnects
Ru와 Co의 차세대 반도체 배선 적용성 연구
Dooho Choi
최두호
Korean J. Met. Mater. 2018;56(8):605-610.   Published online 2018 Aug 5
DOI: https://doi.org/10.3365/KJMM.2018.56.8.605

Abstract
Severe resistivity size effect in Cu interconnects is attributed to the relatively long bulk electron mean free path (39 nm at 298 K), which is inherently determined by phonon scattering. In this regard, Ru and Co have been recently considered as attractive alternatives for next-generation interconnect materials because the significantly..... More

                   Crossref 6
1 |
E-Submission
Email Alert
Author's Index
Specialties
Journal Impact Factor 1.2
The Korean Institute of Metals and Materials
SCImago Journal & Country Rank
Scopus
GoogleScholar
Similarity Check
Crossref Cited-by Linking
KOFST
COPE
Editorial Office
The Korean Institute of Metals and Materials
6th Fl., Seocho-daero 56-gil 38, Seocho-gu, Seoul 06633, Korea
TEL: +82-2-557-1071   FAX: +82-2-557-1080   E-mail: metal@kim.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Institute of Metals and Materials.                 Developed in M2PI